PART – A

Answer all questions. Each question carries 4 marks.

1. If \(f(x) = \frac{k}{2^x} \) is a probability distribution of a random variable which can take values \(x = 0, 1, 2, 3, 4 \). Find \(K \) and Mean of the distribution.

2. Find the mean and variance of the probability distribution with density function
 \(f(x) = Ke^{-\frac{1}{8}(x^2+8x+16)} \).

3. The customers arrive at a bank according to a Poisson Process with mean rate of 2 minutes. Find the probability that during an 1 minute interval no customers arrive.

4. The autocorrelation function of a stationary process \(\{(X(t))\} \) is given by
 \(R(\tau) = 2 + 4e^{-2|\tau|} \). Find mean and variance of the process \(\{(X(t))\} \).

P.T.O.
Using Lagrange's interpolation formula find the value of y when $x = 9$ for the following data

\[
\begin{array}{ccc}
X & 5 & 6 & 11 \\
Y & 12 & 13 & 16 \\
\end{array}
\]

\((5 \times 4 = 20 \text{ Marks})\)

PART – B

Answer one full question from each Module. Each question carries 20 marks.

Module – I

6. (a) If \(f(x) = \begin{cases}
0 & x < 2 \\
\frac{1}{18} (2x + 3) & 2 \leq x < 4 \\
0 & x > 4
\end{cases} \) is the probability density function of a random variable. Find Mean and distribution function.

(b) Human errors is given as the reason for 75% of all accidents in a plant. Use Binomial distribution to find the probability that human error will be given as the reason for 2 of the next 4 accidents.

(c) The mean weight of 500 students at a certain school is 50 kg and the standard deviation is 6 kg. Assuming that the weights are normally distributed, find the expected number of students weighing

(i) between 40 and 50 kg

(ii) more than 60 kg.

OR

\[
2
\]

G – 3586
7. (a) A Random variable has the following probability distribution

\[X \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \]

\[f(x) \quad 1/10 \quad k \quad 1/5 \quad 2k \quad 3/10 \quad 3k \]

Find:

(i) \(k \)

(ii) Mean

(iii) Variance

(iv) \(P(-2 < X < 2) \).

(b) The number of cell phones sold daily in a shop is uniformly distributed with a minimum of 50 phones and a maximum of 100 phones. Find the probability that:

(i) the daily sales will fall between 70 and 80 phones

(ii) at least 75 phones are sold on a given day

(iii) at most 70 phones are sold on a given day.

(c) The monthly breakdown of a computer follows Poisson distribution with mean 1.2. Find the probability that this computer will function for a month

(i) without a break down

(ii) with only one break down

(iii) with at most two break down.
Module – II

8. (a) If \(f(x) = \begin{cases} e^{-(x+y)} & x \geq 0, \ y \geq 0 \\ 0 & \text{otherwise} \end{cases} \) is a joint probability density function of two dimensional random variable. Find \(\Pr \left(\frac{1}{2} < X < 2, \ 0 < Y < 4 \right) \).

(b) If \(f(x, y) = 2 \) for \(0 < x < 1, \ 0 < y < x \) is the joint probability density function of random variables \(X \) and \(Y \), find the marginal and conditional density functions. Are \(X \) and \(Y \) independent?

(c) Calculate the coefficient of correlation for the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

OR

9. (a) Show that \(X(t) = A \cos(\omega_0 t + \theta) \) is WSS if \(A \) and \(\omega_0 \) are constants and \(\theta \) is uniformly distributed in \((0, 2\pi)\).

(b) Show that the random process \(X(t) = A \cos \lambda t + B \sin \lambda t \) (\(A, B \) are random variables) is WSS if \(E(A) = E(B) = 0, \ E(A^2) = E(B^2), \ E(AB) = 0 \).

Module – III

10. (a) If the auto correlation function of a random process is \(R(\tau) = \rho e^{-\rho|\tau|}, \ \rho > 0 \), show that the spectral density is given by \(S(w) = \frac{2}{1 + \left(\frac{w}{\rho} \right)^2} \).

(b) If the auto covariance function of a stationary process \(X(t) \) is given by \(C(\tau) = q e^{-\alpha|\tau|} \) (\(\alpha > 0 \) and \(q \) are constants). Show that \(X(t) \) is mean ergodic.

OR

4

G – 3586
11. (a) If the auto correlation function of a WSS process is \(R(\tau) = \rho e^{-\rho |\tau|}, \rho > 0 \), show that \(X(t) \) is mean ergodic.

(b) Suppose that customers arrive at a shop in accordance with a Poisson process with mean arrival of 5 minutes. Find the probability that during a time interval of 3 minutes

(i) exactly 10 customers arrive

(ii) more that 10 customers arrive.

Module – IV

12. (a) Find the root between (2, 3) of \(x^3 - 2x - 5 = 0 \) by regulaFalsi method.

(b) Solve by Gauss Seidal Iteration method

\[
3x + 2y = 4.5, \quad 2x + 3y - z = 5, \quad -y + 2z = -0.5.
\]

Use Initial approximation \(x_0 = 0.4, \ y_0 = 1.6, \ z_0 = 0.4 \).

(c) Evaluate \(\int_{0}^{\frac{\pi}{2}} \sin x \, dx \) using:

(i) Trapezoidal rule

(ii) Simpson’s rule with 10 equal intervals.

OR

5

G – 3586
13. (a) Solve by Gauss Elimination method:

\[x + 2y + z = 3, \ 2x + 3y + 3z = 10, \ 3x - y + 2z = 13. \]

(b) Using Newton’s forward interpolation formula estimate \(\sin 47^\circ \) given

\[
\begin{array}{cccccc}
\theta & 45 & 50 & 55 & 60 & 65 \\
\sin \theta & 0.7071 & 0.7660 & 0.8192 & 0.8660 & 0.9036 \\
\end{array}
\]

(c) Using Newton-Raphson’s method solve the equation \(\cos x + 1 = 3x \) correct to 4 decimal places.