(Pages: 3)

COLLEGE OF ENDINERPING &	2384
LIERA.RY (2)	
TRIVANDRUM-15 * 1300	

Reg. No.:.....

Name:.....

Eighth Semester B.Tech. Degree Examination, May 2018 (2013 Scheme)

13.805.8 : CRYOGENIC ENGINEERING (MPU) (Elective – IV)

Time: 3 Hours Max. Marks: 100

PART – A

Answer all questions. Each question carries 2 marks.

- 1. Sketch the variation of liquid specific heat with temperature for He-4.
- 2. What is superconductivity and superfluidity?
- 3. Write down four breakthroughs in the developmental history of cryogenics.
- 4. What are the pay-off functions in gas liquefaction systems?
- 5. Why simple Linde-Hampson cycle cannot be used to liquefy gases such as He, Ne, H₂ etc. ?
- 6. Discuss classification of cryocoolers.
- 7. Draw schematic representation of a magnetic refrigerator and T-s diagram.
- 8. Name two cryogenic liquid level gauges and cryogenic flow measuring devices. .
- 9. What are the factors to be considered for selecting insulation for a particular application?
- 10. Why multilayer insulations must be evacuated to very low pressure (below 10 mPa) to be effective ?

PART – B

Answer any one full question from each Module. Each question carries 20 marks.

		Module – I	
11.	A)	Explain the electrical and magnetic properties of materials at cryogenic temperatures.	10
	B)	Explain applications of cryogenic engineering in space, superconductivity and medicine.	10
		OR	
12.	A)	Explain the properties of the following liquids (1) Nitrogen (2) Oxygen (3) Hydrogen (4) Helium.	10
	B)	Explain variation of specific heat of solids with temperature.	10
		Module – II	
13.	A)	Sketch the isenthalpic curves for a gas and show the inversion curve. What is the significance of Joule – Thomson coefficient?	10
	B)	Prove that Joule – Thomson coefficient is equal to zero for an ideal gas. OR	10
4.		Compare adiabatic expansion and isenthalpic expansion. Show that adiabatic expansion will always lead to temperature reduction.	10
		Explain Cascade system for liquefaction of nitrogen. What is the advantage and disadvantage of this system over other liquefaction systems.	10
		Module – III	•
5.		With a neat sketch explain the working of precooled simple Linde-Hampson gas liquefaction system. Derive empressions for liquid yield and work done per unit mass of gas compressed.	15
	B)	Distinguish between Ortho hydrogen and Para hydrogen.	5

16.	A)	Explain with sketches working of Gifford-McMahon (GM) Cryocooler.	10
	B)	Explain about Collin's helium gas liquefaction system with neat sketches.	10
		Module – IV	
17.	A)	Explain the different types of cryogenic fluid transfer system using pipe lines.	1(
	B)	Explain with a neat sketch basic cryogenic storage vessel (Dewar vessel). OR	10
18.	A)	Explain different types of cryogenic insulation materials and compare their performance.	15
	B)	Explain different types of temperature measurement techniques used in cryogenic systems.	5