|--|

(Pages : 4)

E - 2306

Reg. No.	-
Name:	

Third Semester B.Tech. Degree Examination, May 2018 (2013 Scheme) 13.303: NETWORK ANALYSIS (AT)

Time: 3 Hours Max. Marks: 100

PART - A

Answer all questions. Each question carries 2 marks:

- 1. Three equal resistances of 3Ω are connected in star. What is the resistance in one of the arms in an equivalent delta circuit?
- 2. State Reciprocity theorem.
- 3. Give the dual of a circuit containing RLC elements connected in series and excited by voltage V.
- 4. Sketch the response of RC network for a unit step input.
- 5. Define time constant of a RL network.
- 6. State initial and final value theorem of Laplace Transform.
- 7. A resistance 5Ω , inductance 0.02H and capacitor $5\mu F$ are connected in series. Find the resonance frequency.
- 8. Two capacitances C_1 and C_2 of values $10\mu F$ and $5\mu F$ are connected in series. What is the equivalent capacitance of this combination ?
- 9. Define propagation constant.
- 10. Give the expression of h-parameters in terms of Z-parameters.

•

PART – B

Answer any one question from each Module. Each full question carries 20 marks:

Module - I

11. a) Determine the current flowing through the load impedance 3 + j4 using mesh analysis for the network shown in Fig. 11. a).

10

Fig. 11. a)

b) Explain the following terms as applied to network topology:

10

- i) Oriented graph,
- ii) Tree,
- iii) Link and
- iv) Planar graph and non-planar graph.
- 12. a) Using superposition theorem, find the current flowing through the load resistance $R_L = 10\Omega$ in the circuit shown in Fig. 12. a).

10

Fig. 12. a)

- b) Obtain the expression for a set of equivalent:
 - i) Star connected impedance to replace a set of delta connected impedances.
 - ii) Delta connected impedance to replace a set of star connected impedances.

10

Module - II

13. a) Find the Laplace transform of full wave rectified output as shown in Fig. 13. a).

8

b) For the network function I(s), draw the pole zero diagram and hence obtain the time domain response i(t).

$$f(s) = \frac{5s}{(s+1)(s^2+4s+8)}.$$

14. a) For the circuit shown in Fig. 14. a), determine the current delivered by the source when the switch is closed at t = 0. Assume there is no initial charge on the capacitor and no initial current through the inductor.

10

b) Derive the Laplace transform of unit step, ramp and impulse functions.

10

Module - III

15. Find the Z and Y parameters for the RC ladder network shown in Fig. 15. 20

- 16. a) Derive the bandwidth for a series RLC circuit as a function of resonant frequency.
 - b) The resonant frequency of the tuned circuit shown in Fig. 16. b) is 1000 rad/sec. Calculate the self inductances of the two coils and the optimum value of the mutual inductance.

Module - IV

- 17. a) Explain the conditions verified for a function N(s) to be a positive real function.
 - b) Find the two Cauer form realizations of driving point function given by

$$Z(s) = \frac{10s^4 + 12s^2 + 1}{2s^3 + 2s}.$$

18. a) Find the two Foster form realizations of Z(s)

$$Z(s) = \frac{4(s^2 + 1)(s^2 + 16)}{s(s^2 + 4)}.$$

b) Check whether $P(s) = S^5 + 3S^3 + 2S$ is a Hurwitz polynomial or not.