	(Pages : 2) (Pages : 2)
Reg. No.:	REFERENCE E
Name:	TRIVANDUMA 15 * COS
First Semester M.Tech. Degree Examination, June 2017 (2013 Scheme) Branch: ELECTRONICS & COMMUNICATION TSC 1001: Random Processes and Applications	
Time: 3 Hours	Max. Marks: 60
Instruction: Answertwo ques	stions from each Module.
	Module – 1
1. a) State and prove Bayes' Theore	em in Probability.
b) A box contains 5 balls. Two ba while. What is the probability o	lls are drawn at random and are found to be fall the balls being white?
2. a) Define CDF and pdf of a rando	m variable X and list their properties. 4
b) Two jointly continuous random variable X and Y have the joint pdf.	
$f_{xy}(x,y) = \begin{cases} A(x+y), & 0 \\ 0 & \text{otherwise} \end{cases}$	$< x \le 1, 0 < y \le 1$ herwise
Find the value of A and then ev	aluate .
i) $f_x(x)$	ii) $P[X + Y \le 1]$.
3. If X is a Gaussian random variable probability density function of the i	with zero mean and variance σ^2 . Find the random variable Y = X^2 .
Module – 2	
4. a) Define Moment generating fund	ction of a random variable X.
b) X and Y are two i.i.d random variables with pdfs, $f_x(x) = f_y(x) = \frac{1}{a} rect(\frac{x}{a})$.	

Compute the pdf of Z = X + Y using characteristics functions.

P.T.O.

5. Define the following: i) Poisson Counting Process. ii) Wiener Process. 10 6. a) Define a WSS random process and give an example. b) A white Gaussian noise process with two sided power spectral density $\frac{N_0}{2}$ is given as input to an ideal low pass filter with cut off frequency B Hz and gain unity. Find the Power Spectral Density and Auto-correlation of the output random process. 6 Module - 3 7. State and prove Central Limit Theorem. 10 8. a) Define almost sure convergence and convergence in probability of a sequence of random variables. b) State and prove Weak Law of large numbers. 6 9. Obtain K-L expansion of a Wiener random process. 10