Reg.	No.	:	

Third Semester B.Tech. Degree Examination, November 2014 (2013 Scheme)

13.302 : SIGNALS AND SYSTEMS (AT)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer for all questions. Each question carries 2 marks.

- 1. Define a stable system. Give an example.
- 2. Determine whether the given signal x (t) = $Sin\left(\frac{2\pi}{3}t\right)$ is periodic or not. If the signal is periodic, find the fundamental period.
- 3. Give Gibbs phenomena for Fourier series convergence.
- 4. Define Energy Spectral Density.
- 5. Give the condition for distortionless transmission of a signal.
- 6. State low pass sampling theorem.
- 7. If x (t) is band limited to W Hz, that modulates a high frequency carrier signal c (t) = cos $(2\pi f_c t)$, with $f_c > W$, and generates the modulated signal, s (t) = x (t) cos $(2\pi f_c t)$, find the Hilbert transform of s (t).
- 8. What is a reconstruction filter?
- 9. Find the Z transform of x (n) = $e^{j\omega n}$. u (n), and then get ROC.
- 10. Give any two properties of DTFS signal.

(10×2=20 Marks)

PART-B

Answer any one question from each Module. Each full question carries 20 marks.

Module-I

- 11. a) Determine whether the following signals are energy signals, power signals or neither.
 - i) A.Cos $(\omega_0 t + \theta)$

ii) e^{-at} ; $t \ge 0$

iii) A e j2πft

iv) 2.e^{j3n}

8

b) Convolve the following two signals x (t) and h (t), then sketch all signals.

x(t) = 1 0 < t < T &

h(t) = t 0 < t < 2T

0 otherwise

0 otherwise 12

12. a) Sketch the signal given below

i)
$$x(t) = u(t) - u(t - T) - u(t - 2T) + u(t - 3T)$$

ii)
$$x(t) = t.u(t) - (t - T) u(t - T)$$

8

- b) The impulse response of system is h(t) = 4(t) $0 \le t \le T$
 - 0 otherwise

The input signal $x(t) = e^{-at} u(t)$. Find the output of the system y(t) for,

- i) t < 0,
- ii) 0 < t < T,
- iii) T > T.

12

Module - II

13. a) Prove the Parseval's theorem for CTFS.

6

b) Find the Inverse Laplace transform of X (s) = $\frac{s+8}{s^2+6s+13}$

6

- c) Find the Fourier Transform of,
 - i) $x(t) = t^2 u(t) u(1 t)$ and
 - ii) $x(t) = t \exp(-\alpha t) u(t), \alpha > 0$

8

14. a) Give the properties of Fourier transform and explain briefly.

12

- b) Find the Laplace transform of the given signal and give the ROC for each case.
 - i) $x(t) = u(t) + e^{-3t} u(t)$ and
 - ii) $x(t) = e^{-4t} u(t) e^{-4(t-1)} u(t-1)$

8

Module - III

- 15. a) What is flat top sampling? Discuss with the help of necessary equations.
 - b) Explain the properties of continues time Hilbert transform.

10

16. a) State and prove band pass sampling theorem.

8

- b) Find the Hilbert transform of the following functions.
 - i) $x(t) = cos(2\pi ft) + sin(2\pi ft)$

ii)
$$x(t) = e^{-j 2\pi f t}$$

iii) $x(t) = \delta(t)$

iv)
$$x(t) = \frac{1}{\pi t}$$

8

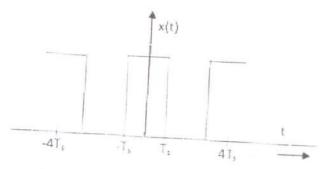
c) What is Aliasing? Explain.

4

Module-IV

17. a) Find the DTFT of a signal x (n) given by

$$x(n)=1 \ 0 \leq n \leq N-1$$


0 elsewhere.

Plot the magnitude and phase characteristics for N = 5.

10

b) Determine the Fourier Series of the square wave as shown in figure and sketch.

10

18 a) Briefly discuss the properties of Z transform.

12

b) Find out the Z-transform of the signal x (n).

$$X(n) = \left(\frac{1}{5}\right)^n . u(n) + \left(\frac{1}{8}\right)^n . u(n)$$

8