Reg.	N	0.	r	a a		u	a	я	Œ	w	*	œ	•	u	a		ø	20 1				a	38			16		=		N	æ	
Name	. :				et.		e	×				W 1							 					a	15	w	w			æ		

First Semester M.Tech. Degree Examination, March 2014 (2008 Scheme)

Electronics and Communication Engineering
Stream: Telecommunication Engineering
TTC 1005: ADVANCED OPTICAL COMMUNICATION

Time: 3 Hours Max. Marks: 100

Instruction: Answer any five questions. All questions carry equal marks.

- 1. Explain the working of EDFA, describing different pumping schemes used. What are the common wavelengths used for pumping? Mention the demerit of choosing 800 nm.
- 2. What is Gordon-Hans fitter, in the context of soliton based systems? Considering this, compare performance of loss managed and dispersion managed solitons.
- 3. Explain how solitons are formed by counter balancing action of GUD and SPM. Derive expression for peak power of fundamental soliton pulse.
- 4. Compare BER performance of optical communication systems using FSK modulation format. Compare in terms of photons/bit required for BFR = 10^{-9} .
- 5. Which optical amplifier offers the largest bandwidth? Sketch the variations in gain coefficient of a fiber Raman amplifier as function of Raman shift. Assume fiber is made of pure silica and pumped at 1 γm.
- 6. Draw the block Schematic of a typical optical receiver. Explain each block in detail.