Reg.	V.C.	2	ŧ	0	4,0	£	*	6	×	2	R	P	8	6	21.	SI	Ŀ	ıs	6	e	N	¥	2	LJ.	e	e	5	T.	ę.	£	2	ě	2	2		11	
Vame	y e																																				

First Semester M.Tech. Degree Examination, March 2013 (2008 Scheme)

(Electronics and Communication Engineering)
Telecommunication Engineering
TTC 1005: ADVANCED OPTICAL COMMUNICATION

Time: 3 Hours Max. Marks: 100

Instructions: 1) Answer any five.

2) All questions carry equal marks.

 (5×20)

- 1. Compare bit error rate performance of coherent systems using PSK modulation format. Estimate the number of photons per bit required for BER = 10^{-9} in each case.
- 2. Prove that sensity of a coherent receiver can be enhanced by increasing the power output of a laser source used in the receiver.
- Distinguish between loss managed solitons and dispersion managed solitons.
 Compare the timing jitter occurs in DM managed soliton systems with that in loss managed systems.
- 4. Explain the soliton propagation with the help of NLSE. Compare fundamental and second order soliton propagation. Deduce an expression for peak power of soliton pulse.
- 5. Explain with neat sketches, the working of an EDFA. What is the noise present in EDFA? Explain.
- 6. Differentiate between FRA and FBA. Draw block schematics of these amplifiers and explain their working principles. Compare their performance.