Reg. No.:

Third Semester B.Tech. Degree Examination, April/May 2012 (2008 Scheme)

Branch: ELECTRONICS AND COMMUNICATION ENGINEERING 08.306: Digital Electronics (T)

Time: 3 Hours

Max. Marks: 100

PART - A

Answer all questions. Each question carries 4 marks.

1. Using Boolean rules and laws, simplify

$$f = \overline{a} \overline{b} \overline{c} + \overline{a} \overline{b} c + a \overline{b} \overline{c} + abc$$

- 2. Show how a full adder can be made to subtract.
- 3. Write VHDL program for NAND and NOR gates.
- 4. Explain a basic static RAM storage cell.
- 5. What are the input and output voltage levels of TTL?
- 6. Define flip flop set up time and hold time with diagram.
- 7. Explain the differences between non retriggerable and retriggerable monostable multivibrators.
- 8. With an example, explain partial flow table showing a cycle in an asynchronous machine.
- 9. Distinguish between fundamental and pulse mode asynchronous sequential circuits.
- 10. Explain static, dynamic and essential hazards with examples.

PART-B

Answer any 2 questions from each Module. Each question carries 10 marks.

MODULE-1

11. Using Quine Mc-Cluskey method, simplify the following Boolean function and design a circuit using NAND gates.

$$f\left(a,b,c,d\right) = \sum (0,3,4,5,6) + \sum d\left(1,7,10,15\right)$$

- 12. a) Using a 2 to 4 decoder, realise the Boolean function. $F = \overline{a} \, \overline{b} + ab$.
 - b) Determine the ripple carry propagation delay for a 4 bit adder. Find the total average current requirement.
- 13. a) Realise a full adder using multiplexer.
 - b) Realise $f = w \overline{y} + \overline{y} z$ using a 3 to 8 decoder.

MODULE-2

- 14. a) Draw the internal circuit of a tristate TTL gate and explain its working.
 - b) When a TTL gate drives 5 TTL inputs, find sinking current and sourcing current of driver.
- 15. Draw the circuit of a universal shift register and explain its working.
- 16. a) What are the flip flop timing specifications?
 - b) Design a Mod-6 synchronous counter with D flip flops.

MODULE-3

- 17. a) Draw the Mealy and Moore sequential circuit models and explain the differences between them.
 - b) Construct state diagram for a Mealy sequential circuit that will detect the serial input sequence x = 010110. When complete sequence has been detected then cause output z to go high.

18. Reduce the following state tables using the equivalence class state reduction technique.

Present state	Next state		Output	
	x = 0	x = 1	x = 0	x= 1
S _o	S ₂	S ₁	0	1
S ₁	S ₃	S ₁	0	1
S ₂	S _o	S_3	1	0
S ₃	S ₁	S_2	1	0

19.a) What are races and cycles? Explain with example.

b) Design a hazard free combinational circuit $f = \sum m(0, 1, 2, 3, 10, 11, 15)$.

